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ABSTRACT
To enjoy a wonderful cooking experience in a smart kitchen, users and designers need a visual 
interaction platform. This paper proposes a DT framework incorporating data processing, flow 
field online simulation, equipment monitoring, interaction and visualization. Specifically, the 
DT online simulation and visualization of the kitchen fume flow field serve as the foundation for 
appliance design and control. Additionally, users can gain deeper insight into the state and 
change trends of the kitchen. To address the online simulation of the flow field, a RFNO online 
simulation method is proposed. In addition, this paper proposes an Echarts-based 2D and UE5- 
based 3D flow field visualization method to enable dynamic visualization and interaction of the 
flow field. The proposed DT framework was successfully verified in the case of the smart 
kitchen, demonstrating its efficiency and effectiveness.
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1. Introduction

The DT is described as a simulation process that 
integrates multidisciplinary and multiscale simulation 
through multiple sensors’ collaborative sensing of 
physical reality (Tuegel et al., 2011). Smart home DT 
technology is a cutting-edge approach that leverages 
sensors, IoT devices, and Artificial Intelligence algo-
rithms to collect and analyze data in real-time. By 
doing so, it creates a virtual model of the home envir-
onment that can be used for remote monitoring, pre-
diction, and control. This technology has the potential 
to greatly improve home security, energy efficiency, 
and environmental sustainability by providing real- 
time insights into the behaviour of the home 
environment.

Designers of smart homes face several challenges, 
including the need for real-time and convenient data 
exchange and high data accuracy. To address these 
challenges, researchers have developed various 
approaches to enhance the efficiency and reliability, 
and user-friendliness of smart home DT systems. 
Gopinath et al. (2019) redesigned the smart home 
with DT technology, which improved efficiency and 
user-friendliness compared to traditional IoT systems. 
Maryasin (2019) used Ontologies to facilitate data 
exchange between embedded models and service pro-
grammes of the DT, as well as between the DT and 
external agents, users, or other software. Yang et al. 
(2023) used InfoMat to map user location, walking 
trajectory, and dynamic activity to the twin space. 

However, these DT systems only target single-point 
data, making it difficult to reflect field data. Real-time 
calculation and high accuracy for field data in smart 
home DT systems have not yet been fully addressed. 
Future research should focus on developing more 
advanced algorithms and techniques to improve the 
accuracy and real-time processing of field data in 
smart home DTs.

From the user’s perspective, a smart home DT must 
achieve optimal levels of interactivity and visualiza-
tion. In this regard, Xu et al. (2023) conducted an 
interactive visual analysis of urban traffic data and 
devised an intuitive and user-friendly interface for 
users. Similarly, Kriushichev et al. (2020) developed 
Vector Viz, which enables data to be represented using 
a particle system, streamlines, or a contour on a plane. 
However, the interactive visualization of the smart 
home flow field remains an unexplored area. 
Therefore, further research and development are 
necessary to enhance the interactive visualization 
techniques of smart home DTs, thereby improving 
user experience and operational efficiency.

In the context of smart homes, the kitchen is 
a crucial area that requires special attention. Given 
that cooking is a daily activity in most households, it 
is important to consider the potential health risks 
associated with the production of fumes, particularly 
in China where cooking is deeply rooted in tradition 
and culture. Numerous studies have demonstrated 
that fumes can have adverse health effects, including 
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respiratory diseases (Casas et al., 2012) and even lung 
cancer (Buonanno et al., 2017). As such, developing 
effective monitoring, control, visualization, and inter-
action mechanisms for the kitchen scene is imperative 
to mitigate these risks and ensure a healthy living 
environment.

The smart kitchen DT platform plays a crucial role 
in enabling integrated home designers to select the 
appropriate hood model for different kitchens. 
However, without the ability to perform real-time 
calculations and visualization of the flow field, the 
platform’s effectiveness is limited. This can lead to 
reduced design efficiency, increased costs, and impro-
per design, which can compromise the effectiveness of 
fume discharge and reduce kitchen comfort while 
posing safety hazards. Moreover, users may find it 
challenging to understand the generation and propa-
gation rules of fume and visually manage the kitchen 
fume environment. This can lead to ineffective mea-
sures to control fumes and a lack of awareness of the 
degradation of air quality, which can negatively reduce 
comfort, and cooking experience, and impact health. 
Therefore, real-time simulation and visualization of 
the kitchen flow field are essential to address these 
challenges and ensure optimal kitchen performance 
and user experience.

1.1. Online simulation of the fume flow field

The computational problem of the flow field is 
a common challenge in engineering, often addressed 
through simulation techniques (Tezduyar et al., 1996). 
Despite significant advancements in simulation soft-
ware, such as Ansys Fluent, the computational 
demands of flow field simulations remain time- 
consuming and often fail to meet real-time require-
ments. To address this challenge, a fast computational 
method known as ROM has been developed. ROM 
establishes a mapping between input parameters, such 
as physical parameters or initial conditions, and the 
output flow field, enabling real-time computation of 
flow fields.

Commonly used ROMs for flow fields include 
POD-Galerkin (Rowley & Dawson, 2017), PINN (Lu, 
Jin, et al., 2021), GNS (Pfaff et al., 2020), Neural 
Operator-based learning. POD-Galerkin is based on 
the Navier-Stokes equations and uses POD-extracted 
orthogonal modes to satisfy the Galerkin expansion. 
However, it has several disadvantages such as non- 
convergence, non-conservation of energy, and too 
long transition states. PINN utilizes the gradient of 
the partial differential equation (PDE) and the loss 
between the real value and predicted solutions to 
accelerate the calculation of flow fluid. However, it is 
slow and difficult to achieve the convergence of 
a complex PINN. GNS, received formatted graphical 
data as input which fits the flow field grid, enabling the 

simulation of complex fluids. Han et al. (2022) com-
bined GNS with the transformer to improve the error 
accumulation problem. However, the hardware 
required for training is very demanding. Neural 
Operator-based learning, such as DeepOnet (Lu, Jin, 
et al., 2021) and FNO (Z. Li et al., 2020), have good 
generalization capability and require only quasi-linear 
computational complexity. Convolutional Neural 
Network (CNN) (Gu et al., 2018) is effective for 
images with local features, but for the flow field online 
simulation problem, which is essentially solving PDEs, 
the global convolution in Fourier space is more effec-
tive than CNN. FNO-based ROM has significant 
advantages in the real-time computation of the 
kitchen flow field. However, increasing the number 
of layers of FNO may decrease accuracy and even 
cause the gradient to disappear, limiting the flow 
field simulation accuracy.

1.2. Visualization of the fume flow field

Visualization techniques are commonly employed as 
a supplementary tool to flow field simulation, to pro-
vide professional designers with insights into the char-
acteristics of the flow field, such as pressure, velocity, 
and volume fraction (Kamat & Martinez, 2001). 
However, these techniques often overlook the beha-
viour of the flow field in a given scene, such as the flow 
and diffusion of fumes in a kitchen. Users may be 
more concerned with the visual representation of the 
flow field rather than its specific properties. This can 
make it difficult for users to effectively manage kitchen 
appliances.

Flow field visualization is an important aspect of 
understanding fluid dynamics in various fields such as 
engineering, physics, and meteorology. Vector dia-
grams, flow line diagrams, and line convolutional 
integration (Cabral & Leedom, 1993) are some of the 
commonly used visualization methods for flow fields. 
These methods help in representing the direction and 
magnitude of fluid flow clearly and concisely. With the 
advancement of graphics technology, it has become 
possible to choose appropriate flow field visualization 
methods for different scenarios. For instance, web 
visualization is suitable for 2D flow fields, while UE5 
(Epic Games, 2021) is well-equipped for 3D flow field 
visualization and interaction. However, integrating 
sensor data and flow field data import, processing, 
and visualization in the smart kitchen DT automati-
cally is a challenging task. Moreover, it is essential to 
ensure the accuracy and reliability of the data to enable 
effective decision-making in the smart kitchen 
environment.

Integrating the application scenes into the flow field 
visualization model and interactive features is the key 
to meeting the requirements of users and designers, 
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where interactive features include the user-system 
interaction and the system-hardware interaction.

The proposed visual DT framework for the smart 
kitchen integrates data processing, flow field online 
simulation, equipment monitoring and control, inter-
action, and visualization. Offline CFD-based simula-
tions are often time-consuming, so the RFNO online 
simulation method is proposed to achieve rapid and 
accurate calculations. Additionally, this paper pro-
poses the Echarts-based 2D flow field web visualiza-
tion and the UE5-based 3D flow field particle 
interactive visualization method to enable dynamic 
visualization and interaction of the flow field, which 
is particularly beneficial for users as existing simula-
tion results are often geared towards professionals.

The remainder of this article is structured as fol-
lows: Chapter 2 introduces the DT framework of the 
smart kitchen, Chapter 3 introduces the online simu-
lation method, Chapter 4 introduces the interaction 
and visualization method, and Chapter 5 introduces 
cases and applications.

2. The DT framework of the smart kitchen

The DT of a smart kitchen is a crucial tool for 
designers and users alike. For designers, it enables 
greater efficiency by allowing them to quickly test 
and validate design solutions in a virtual environment, 
saving time and resource costs. Additionally, the DT 
can produce highly accurate prediction results, pro-
viding designers with a deeper understanding of the 
kitchen’s operation.

For users, the DT provides better decision support 
by helping them understand the state of the kitchen 
and make informed decisions to improve the kitchen 
flow field and reduce health hazards from fumes. The 
DT also provides more intuitive and vivid visualiza-
tion, allowing users to better understand and perceive 

information in the virtual environment and feel the 
improvement of the kitchen space by kitchen pro-
ducts, enhancing their overall happiness. Overall, the 
DT of the smart kitchen is an essential tool for 
improving efficiency, accuracy, and user experience.

The smart kitchen DT framework depicted in 
Figure 1 is a comprehensive system that integrates 
various technologies and components to create 
a virtual replica of a physical kitchen environment. 
This framework enables real-time monitoring and 
analysis of kitchen operations, as well as the ability to 
simulate various scenarios for improved efficiency and 
productivity. The framework is designed to leverage 
cutting-edge technologies such as IoT, machine learn-
ing, and data analytics to provide a seamless and 
intuitive user experience.

The IoT layer is responsible for collecting data from 
various sensors, such as temperature sensors, PM2.5 
sensors, and VOC sensors, among others. This data is 
then sent to the IoT Hub, which serves as the primary 
connection point for IoT devices. The IoT Hub sends 
the online data to the ROM layer as input, while the 
sensor data is sent to the DT Platform via the REST 
API and Plug-in. The data is then rendered in the DT 
Platform.

The flow field simulation data is stored in a twin 
database in the ROM layer. This simulation data is 
used as offline data for training the ROM. Once the 
ROM is constructed using the data in the database, 
online data is inputted, and flow field data is outputted 
into the DT Platform via the Plug-in.

In the DT Platform, the visualization platform has 
been utilized to create a twin model of the kitchen, 
which includes the geometric model of the kitchen as 
well as the modeling and rendering of various kitchen 
appliances such as hoods, ovens, and refrigerators. This 
model is depicted in Figure 2. The visualization forms 
have been selected in the visualization layer, allowing 

Figure 1. DT framework of the smart kitchen.
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users to observe the temperature field and choose from 
particle mode, arrow mode, and path line mode for the 
flow field. The interactive interface has been implemen-
ted in the interaction layer using Unreal Motion 
Graphics for users and designers. This allows users to 
interact with the Unreal Motion Graphics to obtain 
information from sensors such as temperature and air 
quality, import the flow field, and choose the appro-
priate way to visualize the flow field. Additionally, users 
can adjust the hood’s gear to observe the change of 
fume and control the stove fire and hood status accord-
ing to the state of the cooking fume.

3. The RFNO online simulation method of the 
flow field

Online simulation of the flow field is an important 
aspect of the smart kitchen DT, but traditional simula-
tion methods are slow and can’t meet the real-time 
mapping demand. Existing ROMs such as FNO have 
good performance in terms of accuracy and speed, but 
t its accuracy is limited.

In flow field online simulation, the datasets are 
very scarce. To obtain a more accurate approxima-
tion of the flow field, increasing the number of layers 
of FNO can improve accuracy when the number of 
data samples is difficult to increase. However, in 
practice, as the number of layers increases, the accu-
racy of the model becomes higher until a certain level 
where the accuracy may decrease and even the gra-
dient disappears, as shown in Figure 3. The error 
gradually decreases from 4 layers to 7 layers, but the 
gradient disappears at 8 layers. This is because deeper 
FNO is more prone to gradient disappearance or 
explosion problems, making the model difficult to 
train.

To address the issue, a novel approach called RFNO 
is proposed. The framework of RFNO is illustrated in 
Figure 4, where the input is denoted as ½a;X;Y�, 
representing the initial conditions or physical para-
meters, and X;Y representing the location informa-
tion. The input is then encoded and passed through 
N residual modules, each containing 3 Fourier layers, 
before being decoded to obtain the solution of the flow 
field.

Figure 2. Realistic scene and twin scene of the smart kitchen DT.

Figure 3. Comparison of the training loss of different layers’ FNO for a 2D kitchen. The specifics of the 2D kitchen are outlined in 
Section 5.3.1.
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The iterative updates process from the Fourier layer 
i to the Fourier layer iþ 1 can be expressed as follows: 

The initial conditions or physical parameters and posi-
tion information are first encoded as H. For flow field 
prediction, the input is the initial condition, while for 
mapping physical parameters obtained from IoT to 
the flow field, the input is the physical parameters 
that are used to guide training under zero initial con-
ditions. The position information confers localized 
inductive bias, which helps the model converge faster 
and generalize to new data more easily. By applying 
the Fourier transform F , the global convolution in 
Fourier space is effective in extracting flow field infor-
mation. The linear transform L filters out the high- 
frequency modes, and the Fourier inverse transform 
F� 1 transforms it back to the source space, adding the 
output to the linear transform W. A nonlinear map-
ping is then performed by the activation function σ to 
help recover the missing high-frequency modes and 
acyclic boundaries.

To achieve higher accuracy by increasing the num-
ber of layers, residual learning (He et al., 2016) is 
introduced to complement the FNO by adding directly 
connected channels between different Fourier layers, 
as shown in Figure 5.

For FNO, without NRi 

where Ri represents input, Riþ1 represents output.
For RFNO 

The gradient of FNO is 

The gradient of RFNO is 

The item @ðNRiÞ

@Ri
¼ N in the RFNO ensures that even if 

the gradient in the network is small or even disap-
pears, the overall gradient still has a non-zero value. 
The information and gradient can still propagate effi-
ciently, avoiding the problem of disappearing FNO 
gradient, which will help the network to learn more 
efficiently and improve the accuracy of the model.

4. The interaction and visualization method

In the context of DTs, the ability to interact with and 
visualize the model is a crucial aspect. By facilitating 
user interaction with the DT model, users can gain 
a more intuitive understanding of the model’s opera-
tion and can modify and optimize the model accord-
ingly. In the smart kitchen, the DT model can simulate 
the operation of a hood. Through interaction, users 

Figure 4. The framework of RFNO.

Figure 5. Residual module with 3 fourier layers.
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can adjust the hood gear and optimize its 
performance.

The use of visualization in DTs is essential for 
presenting data and information in a manner that is 
easily understood and analyzed by users. Real-time 
data is particularly useful in enabling users to 
promptly understand the state and changes of physical 
systems. By utilizing charts and other data presenta-
tion methods within the DT model, users can gain 
a clearer understanding of trends and patterns in 
data changes. In the context of a smart kitchen, visua-
lization technology can be particularly useful for 
designers in selecting appropriate kitchen appliances 
for different kitchens, thereby improving development 
efficiency. For users, visualization can help deepen 
their understanding of the state and trends of the 
kitchen, and enable them to more intuitively appreci-
ate the improvements made by kitchen appliances.

The DT interaction and visualization in this paper 
are realized through Echarts and UE5. Echarts is an 
open-source visualization chart library that utilizes 
JavaScript, making it suitable for rapid 2D flow field 
visualization. UE5 is a highly advanced real-time 3D 
creation tool that boasts top-notch graphics technolo-
gies, such as the Niagara particle system, which 
enables the effective visualization of 3D flow fields. 
While 2D visualization is faster in terms of computa-
tion speed, it often lacks detail and can become dis-
torted when the viewpoint changes. In contrast, 3D 
visualization can adapt to changes in viewpoint and 
provide a rich level of detail, but computation speed is 
often slower.

The flow field visualization method proposed in 
this paper establishes a bridge for data between the 
simulation platform and the visualization platform, 
integrating them to achieve dynamic visualization 
and interaction. Simulation data is processed and 
imported into Echarts and UE5, enabling real-time 
visualization. The powerful graphics processing unit 
provides fast rendering speed. So it won’t be 
a bottleneck for real-time visualization of DTs

4.1. Echarts-based 2D flow field web visualization 
method

The previous chapter has introduced ROM, which 
effectively addresses the problem of real-time 

generation of 2D flow field data. In this section, we 
present a methodology for achieving 2D visualization 
that considers real-time performance and optimal 
visualization outcomes. The process is outlined in 
Figure 6 and comprises the following steps:

● Firstly, the data is generated based on the ROM.
● Secondly, the data is processed using a Python 

script and sent to Echarts in JSON format, where 
it is stored in an array ½x; y; dx; dy�.

● Thirdly, the starting point of the rendering is 
defined as ½x � dx=2; y � dy=2�, and the endpoint 
is ½x þ dx=2; yþ dy=2�. The rendering is per-
formed using Canvas.

This process enables the efficient and effective visua-
lization of 2D flow field data, which is critical for 
optimizing kitchen appliance design and control. 
Using Echarts and Python script enhances the speed 
and accuracy of data processing while using Canvas 
enables fast and reliable rendering.

4.2. UE5-based 3D flow field particle interactive 
visualization method

The process of importing flow field data is illustrated in 
Figure 7. Initially, the data is deposited into a text file, 
where each line represents a point of information, 
including position, velocity, and pressure. Subsequently, 
the text data is read and stored in a texture for efficient 
graphics processing unit. The data is then passed to the 
Niagara particle system via the texture. In UE5, an 
“Actor” is created to facilitate the import and storage of 
data in the texture. By leveraging this methodology, the 
visualization of 3D flow fields can be achieved in a highly 
efficient and effective manner.

The use of texture for data transfer offers several 
advantages, including the ability to store a large 
amount of information. Specifically, a 2K texture can 
support the storage of 4,194,304 groups of data, with 
each group containing RGBA 4 channels’ information, 
thereby satisfying the information storage and transfer 
requirements for most flow fields.

Once the data is saved in the texture, it is sampled 
in the Niagara particle system using the 
“TextureSample” function. The “Vector2D” serves 

Figure 6. The process of 2D flow field data visualization.
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as the input for “TextureSample”, and the texture 
data is sampled using the “SampleTexture2D” func-
tion within the module. Specifically, the position 
information in the texture is set to the position of 
the particle, while the velocity information in the 
texture is set to the velocity of the particle. 
A “Sprite Renderer” is added under the “Render” 
module, and the rendering material can be specified. 
Additionally, the velocity can be visualized using the 
arrows in the “Mesh Renderer” with the direction of 
the arrows corresponding to the velocity.

To enable users to visualize the effect of the hood, the 
Niagara Fluids plug-in can be utilized to simulate the 
movement of fumes under the influence of different 
hood gears. The kitchen hood simulation process is 
detailed in Figure 8. By setting the “Wind Direction” of 
the Niagara system to z and exposing the “Wind Speed” 
to the user, adjustments to the “Wind Speed” enable the 
user to experience the movement of fume under different 
hood conditions. This approach facilitates the effective 
optimization of kitchen appliance design and control, 
leading to an enhanced user experience.

5. Cases and applications

5.1. Public datasets

Z. Li et al. (2020) used the 2-d Navier-Stokes equation 
for a viscous, incompressible fluid in vorticity form on 
the unit torus to produce data samples: 

where uðx; tÞ is the velocity field, w ¼ Ñ� u is the 
vorticity, and wðx; 0Þ is the initial vorticity, f ðxÞ is the 
forcing function, and ν is the viscosity coefficient. The 
ðT2 ;T� vorticity is predicted by learning the vorticity of 
ð0; T

2�. The prediction accuracy is measured using Root 
Relative Mean Squared Error(RRMSE)(Z. Li et al.,  
2020). 

Figure 7. The process of 3D flow field data visualization.

Figure 8. The process of simulating kitchen hoods to absorb fume.
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where yi is the true value of the sample, ŷi is the 
predicted value. n is the sample size.

The depicted results in Figure 9 exhibit the 
training loss and test error. Table 1 presents 
a comparative analysis between RFNO and FNO, 
wherein it is observed that for a viscosity ν = 1e- 
5,T = 20, predicting ð10; 20� using ð0; 10�, RFNO 
outperforms FNO by reducing the training error 
by 14.00% and the test error by 10.42%, the corre-
sponding comparative analysis result is shown in 
Figure 10. Similarly, for a viscosity ν = 1e-3, T = 50, 
predicting ð25; 50� using ð0; 25�, RFNO yields 
a significant reduction in the training error by 
14.29% and the test error by 15.25% as compared 
to FNO, the corresponding comparative analysis 
result is shown in Figure 11. Compared with the 
ground truth(the pseudo-spectral method, calcula-
tion time is 2s), both RFNO and FNO have a fast 
calculation time of only 0.01s.

5.2. Case: Flow around a cylinder

The effectiveness of RFNO is demonstrated by the 
flow around a cylinder(3D). Mesh is divided into 
10,362 mesh points and 8640 triangles. To realize 
the mapping of the inlet velocities to the solution, 
the flow field data are generated using 
OpenFOAM. In this section, 400 sets of samples 
with inlet velocities ranging from 1e-2 to 4 were 
generated using OpenFOAM, with a convergence 
criterion of residuals reduced to 1e-4, and the 
velocity field of flow around a cylinder at an 
inlet velocity of 0.45 is shown in Figure 12. After 
these samples were shuffled and normalized, 280 
groups were used for training, and 120 groups 
were used for testing. The number of FNO layers 
used for comparison with the RFNO was 8 and 10 
layers.

The training results are shown in Table 2. From the 
results, it can be seen that the error of RFNO is much 
smaller, with a reduction of 14.67% for the training 
data and 19.78% for the test data, which indicates that 
RFNO can approximate the real flow field more accu-
rately than FNO. Meanwhile, the computation time of 

Figure 9. Train loss and test error comparison of FNO and ours, where viscosity =1e-5 (a) and viscosity =1e-3 (b).

Figure 10. ν = 1e−5, T=20. The results of the ð10; 20� vorticity field were obtained by solving the 2D Navier-Stokes equation using 
RFNO and FNO. The subfigures in the figure are arranged in a top-to-bottom sequence, depicting the ground truth, predictions by 
FNO and RFNO, and the respective errors of FNO and RFNO.
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both RFNO and FNO models is only 0.01s, which is 
much smaller than the 8.50 sec required by the 
OpenFOAM simulation tool, and realizes the real- 
time mapping of the inlet conditions to the solution 
of the flow field. Compared with the ground truth 
(OpenFOAM, calculation time is 8.5s), both RFNO 
and FNO have a fast calculation time of only 0.01s.

The training data loss and test data error for 
both models are shown in Figure 13. We observe 
that the error rises when the number of FNO layers 
increases from 8 to 10, which shows the problem of 
accuracy limitation of FNO. In contrast, RFNO 
(with 4 residual modules and a total of 12 layers) 
can still be trained efficiently and achieve higher 
accuracy.

Figure 14 (a) shows the velocity field solved by 
the CFD-based method, (b) shows the velocity field 
solved by RFNO, and (c) shows the difference 
between the CFD-based method and the RFNO 
velocity field. It can be seen that RFNO can map 
it with high accuracy.

Figure 11. ν = 1e−3, T=50. The results of the ð25; 50� vorticity field were obtained by solving the 2D Navier-Stokes equation using 
RFNO and FNO. The subfigures in the figure are arranged in a top-to-bottom sequence, depicting the ground truth, predictions by 
FNO and RFNO, and the respective errors of FNO and RFNO.

Table 1. Accuracy and time comparison of different methods.
Calculation method Training error Test error Calculation time (s)

FNO(ν=1e-5, T=20) 10.57% 13.63% 0.01
RFNO(ν=1e-5, T=20) 9.09% 12.21% 0.01
FNO(ν=1e-3, T=50) 0.56% 0.59% 0.01
RFNO(ν=1e-3, T=50) 0.48% 0.50% 0.01
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5.3. Application in the DT of smart kitchen

5.3.1. For designers: Simulation using FEA and 
experiment using PIV
Given the regular and simple structure of the kitchen 
geometric model, the focus is primarily on the 2D 
section where the fume is generated. The data samples 
are generated using FEATool Multiphysics, and the 
2D model shape and mesh division are depicted in 

Figure 15. The kitchen shape measures 3.9 m by 2.6 m, 
with recesses on each side of the kitchen counter. The 
left counter has dimensions of 0.7 m by 0.8 m, while 
the right counter measures 0.55 m by 0.8 m. The grid 
size is set at 0.04 m, resulting in a total of 12,755 cells. 
The initial condition is set to zero, while the boundary 
conditions are such that the left counter serves as the 
kitchen cooking place with an inlet velocity of 0.2 m/s 
in the vertically upward direction, while the other 
positions are set to the wall with no slip.

To simulate the changes in fume flow properties 
under different cooking conditions, the viscosity para-
meters are adjusted accordingly. The resulting vorti-
city field when viscosity = 1e-3 is presented in 
Figure 16.

Figure 12. The velocity field of flow around a cylinder.

Table 2. Comparison of the accuracy and time of different 
methods for flow around a cylinder.

Calculation method
Training data 

error
Test data 

error
Calculation time 

(s)

FNO 6.02% 7.43% 0.01
RFNO 5.25% 5.96% 0.01

Figure 13. Comparison of training loss and test error for FNO and RFNO.
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This study employs varying viscosities to approx-
imate the flow field of kitchen fumes under different 
cooking conditions. A total of 500 data samples with 
viscosities ranging from 1e-4 to 1e-1 are utilized for 
training, with 350 sets used for training and 150 sets 
used for testing. The model output is the vorticity 
field.

Figure 17 illustrates the results for the kitchen 
fume flow field, with the error increasing when the 
number of layers is increased to 8 for 500 samples 
and the gradient even disappearing for 100 samples 

in FNO. In contrast, RFNO (with 3 residual modules 
and 9 layers) can still be effectively trained, achiev-
ing higher accuracy. As demonstrated in Table 3, the 
training error for 500 samples is reduced by 14.29% 
and the testing error is reduced by 7.69%, the corre-
sponding results can be found in Figure 18. These 
results indicate that RFNO has better flow field 
approximation and generalization. In practice, the 
trained model can provide a solution to the flow 
field in just 0.01s, while FEA takes 14.86s. The 
proposed RFNO model can thus meet the demand 

(a) CFD-based method                            (b) RFNO 

(c) CFD-based method with RFNO velocity field difference 

Figure 14. Comparison of velocity fields solved by the two methods.

Figure 15. Kitchen geometric shape and meshing.
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Figure 16. Vorticity field of 2D kitchen.

Figure 17. Training loss and test error comparison of FNO and RFNO.

Figure 18. The subfigures in the figure depict the ground truth, results by FNO and RFNO, and the respective errors of FNO and 
RFNO.

Table 3. Accuracy and time comparison of different methods.
Calculation method Training error Test error Calculation time (s)

FNO(500 samples) 0.56% 0.91% 0.01
RFNO(500 samples) 0.48% 0.84% 0.01
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for real-time mapping of the smart kitchen DT. 
Compared with the ground truth(FEA, calculation 
time is 14.86s), both RFNO and FNO have a shorter 
calculation time of only 0.01s.

The 2D visualization of the flow field is presented in 
Figure 19.

Existing online simulation methods rarely verify 
the validity of experimental data. Given the complex 
composition of the fume released at high tempera-
tures, the simulation may not be entirely accurate. 
Therefore, experimental data is needed to verify the 
efficacy of RFNO.

PIV is a non-invasive method for measuring velo-
city with high spatial resolution, making it well-suited 
for determining the fume flow field. In this study, 
high-powered 2D PIV is employed to obtain the 
fume flow field under frontal high-gear interference 
conditions, and RFNO is used to construct a ROM to 
predict the fume flow.

The distance between the wall-mounted range 
hood and the pan was set at 0.6 m, with the hood in 
high gear and the source of smoke being stable. A total 
of 400 sets of fume data were collected from the front. 

The resolution of the vorticity field is100� 100. By 
analyzing the PIV data, it is found that the PIV equip-
ment will capture the non-fume flow field data when 
shooting, and these data greatly interfere with the 
prediction of the fume flow field, so it is necessary to 
denoise the data, and the resolution of the flow field 
velocity after denoising is 72� 72.

We predict time steps of ½30; 35� by ½0; 30�. 
Velocity distributions were obtained by employing 
an adaptive cross-correlation algorithm combined 
with a high-precision sub-pixel interpolation algo-
rithm. This methodology has been verified to effec-
tively control systematic error to within 2% (Cao 
et al., 2014).

The results of the experiment are presented in 
Figure 20, with Table 4 showcasing a comparative ana-
lysis of the training and testing errors for FNO (12 
layers). and RFNO (with 4 residual modules and 12 
layers). The training error is reduced by 53.27%, while 
the testing error is reduced by 35.59%, demonstrating 
the superior accuracy of RFNO in experimental set-
tings. This study successfully implements a real data- 
driven prediction of the fume flow field using PIV.

Figure 19. 2D flow field visualization of the kitchen.

Figure 20. Training loss and test error comparison of FNO and RFNO.
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5.3.2. For users: Sensor data-driven online 
prediction of air quality fields and inverse control of 
equipment
(1) The training of sensor data-driven online predic-
tion model for air quality fields

To understand the impact of the kitchen flow field 
on the user, home environments require an analysis of 
the air quality field. The prediction of air quality in 
a smart home is very critical, and realizing accurate 
prediction of air quality can help to assist in decision- 
making and protect the health of home occupants. In 
this section, an attempt will be made to use the pro-
posed RFNO prediction method for air quality predic-
tion to analyze the impact of the kitchen flow field on 
home users and take appropriate measures.

To achieve the prediction, 20 sensors are installed 
in the home physical scenario and each sensor collects 
four types of data (temperature, humidity, PM2.5 con-
centration, and VOC concentration). The distribution 
of 20 sensors is shown in Figure 21. The four sensors 
in Figure 21 (a) (b) (c) (d) are the closest to the 
kitchen, which have a large variation of data and 
have a direct impact on the cooking staff, and will be 
focused later.

These multi-sensor compositions of air quality field 
data construct a low-resolution field. The core of this 
type of field prediction is temporal dependence within 
each sensor data time series and spatial relationships 
between sensors at different locations. To collect data 
under different cooking conditions, cooking experi-
ments are conducted. The cooking experiments were 
conducted for two days, with 18,000 seconds of data 
on the first day and 15,000 seconds of data on 

the second day, with 80 sensor data per second. The 
data of the first day is used as training data and the 
data of the second day is used as test data. Specifically, 
the data were divided by 30 seconds and 60 seconds, 
which predicted the data of the last 5 seconds and the 
last 10 seconds. The loss of the training data of 30  
seconds and 60 seconds and the decrease of the error 
of the test data are shown in Figure 22. The model 
gradually converged at 200 steps, and the accuracy of 
the model was stabilized at a low level. It can be 
considered that the prediction of the RFNO in the 
air quality field is effective.

The RRMSE of the error prediction results are 
shown in Table 5. From the prediction results, it can 
be seen that the model achieves good results for dif-
ferent time durations, especially when predicting 
values after 5 seconds with higher accuracy.

Figure 23, Figures 24, Figures 25, 26 show the 
RFNO (30-second prediction for 5 seconds) predic-
tion of home PM2.5, temperature, humidity, and 
VOC data compared to the actual results, respectively. 
The four subgraphs of each graph show the predicted 
results of the four sensors closest to the kitchen 
(Figure 21), in order of the kitchen breathing zone 
(the location of the cooking staff ’s nasal passages), 
the kitchen outlet (high), the kitchen exit (low), and 
the living room, and these results are highly variable 
and the predictions are more representative of the 
direct impact on the cooking staff and the home 
environment. Due to space constraints, the other 16 
sensor predictions, as well as the 30-second prediction 
for 10 seconds, 60-second prediction for 5 seconds, 
and 60-second prediction for 10 seconds are not 
shown here.

Overall, as shown by the comparison curves, the 
RFNO method proposed in this paper has high accu-
racy and realizes the sensing data-driven digital twin 
online prediction.

Table 4. Accuracy comparison of different methods.
Calculation method Training error Test error

FNO 13.31% 19.22%
RFNO 6.22% 12.38%

Figure 21. The distribution of 20 sensors.
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(2) The deployment of sensor data-driven online 
prediction model for air quality fields

The trained physical field prediction model is inte-
grated into the digital twin system, which can effec-
tively sense the future occurrence of the situation and 
realize the sensing data-driven online prediction and 
assisted decision-making of the digital twin. The 
multi-functional integrated air sensors can monitor 
the temperature, humidity, VOC, and PM2.5, which 
can be transmitted to the local computer through the 
industrial-grade serial port and stored in the SQL 

Figure 22. Training loss and test error for different time durations.

Table 5. Cooking experiment predictions.
Prediction method Training error Testing error

RFNO(30 seconds to predict 5 seconds) 0.66% 0.84%
RFNO(30 seconds to predict 10 seconds) 1.04% 1.18%
RFNO(60 seconds to predict 5 seconds) 0.63% 0.97%
RFNO(60 seconds to predict 10 seconds) 0.84% 1.25%

(a) Breathing zone                        (b) Kitchen exit (high) 

(c) Kitchen exit(low)                           (d) Living room

Figure 23. Comparison of predicted and actual PM2.5 data at four key locations under simulated cooking.
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(a) Breathing zone                        (b) Kitchen exit (high) 

(c) Kitchen exit(low)                           (d) Living room

Figure 24. Comparison of predicted and actual temperature data at four key locations under simulated cooking.

(c) Kitchen exit(low)                           (d) Living room

(c) Kitchen exit(low)                           (d) Living room

Figure 25. Comparison of predicted and actual humidity data at four key locations under simulated cooking.
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Server database, using the trained RFNO prediction 
model can predict the data after 5 or 10 seconds based 
on these real-time sensor data, which is integrated and 
visualized in the Unreal Engine.

Specifically, by connecting to SQL Server via 
Python Pyodbc to read the database and read the 
latest sensor data, the trained RFNO model in 
PyTorch can read the data and output the predicted 
values. Using the Flask web server to provide the Get 
request interface, the prediction model can be inte-
grated with the digital twin visualization platform via 
the REST API. In this paper, the digital twin plat-
form in the Unreal Engine client through the VaRest 
Get request occurs to the Flask web server to get the 
data.

(3) Application of sensing data-driven online pre-
diction model for air quality fields

Users can turn on or off the hood, adjust the hood 
gear, and other functions in the interactive interface. 
The hood of the twin scene will not change its state 
with it, and it will first send the corresponding control 
commands to the topic of the cloud platform, there are 
five types of hood control messages as follows:

Off: {“PowerSwitchAll”:1, “WorkMode”:0}
Power on: {“PowerSwitchAll”:2, “WorkMode”:0}
Weak Gear: {“PowerSwitchAll”:2, “WorkMode”:1, 
“FanLevel”:2}

Strong: {“PowerSwitchAll”:2, “WorkMode”:1, 
“FanLevel”:3}
Auto: {“PowerSwitchAll”:2, “WorkMode”:2}

The hood of the physical scene will execute the corre-
sponding command after receiving the control com-
mand, and report the current status after the execution 
is completed. The twin device receives the status mes-
sage from the hood device and parses it to update the 
status, realizing the virtual control and virtual-reality 
mapping.

In addition the user can control the hood when the 
deployed model predicts that the value of PM2.5 con-
centration in the kitchen breathing zone reaches 75  
μg/m3 after 10 seconds, and considers that the air 
quality has reached mild pollution, then the system 
automatically sends control instructions to the cloud 
platform to turn on the hood in advance 
(Figure 29(b)), to make the hood turn off 
(Figure 29(a)) after PM2.5 is reduced to the normal 
concentration.

5.3.3. For users: Visualization and interaction
The visualization of the kitchen DT offers real-time 
information on the kitchen’s status, enabling users to 
monitor parameters such as temperature, PM2.5 con-
centration, and more. This feature not only enhances 
users’ ability to monitor the kitchen environment at all 

(c) Kitchen exit(low)                           (d) Living room

(c) Kitchen exit(low)                           (d) Living room

Figure 26. Comparison of predicted and actual VOC data at four key locations under simulated cooking.
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times but also facilitates problem identification. As 
illustrated in Figure 27, the temperature of the pan-
handle during cooking can reach up to 64°C, posing 
a risk of scalding upon contact. Additionally, exces-
sively high room temperatures may lead to food 
spoilage.

Utilizing the fume flow field visualization 
enables users to visually perceive the dispersion 
of fumes within the kitchen and prompts them 
to be attentive to the removal of grease stains or 
adhesions present on the hood and kitchen walls. 
Moreover, users can gain a comprehensive under-
standing of how fumes can potentially lead to 
poor indoor air quality and adversely impact 
human health, thereby empowering them to take 
appropriate measures to improve indoor air qual-
ity. By offering users a means to detect potential 
fire hazards, such as clogged hood pipes and 
excessive fume concentration, the visualization 
tool can effectively prevent fires. Additionally, 
the visualization tool can heighten users’ safety 
awareness by allowing them to recognize the 

risks associated with fumes more clearly, thereby 
facilitating the development of appropriate usage 
habits and enhancing kitchen safety.

The fume flow field visualization is demonstrated 
in Figure 28, which supports arrow mode (a), path 
line mode (b), and particle mode (c). The arrow 
mode depicts the velocity direction, while the con-
centration of fumes is represented by particle den-
sity. In path line mode, the RGB colour values 
correspond to the X, Y, and Z components of 
velocity.

The functionality of the kitchen DT is further aug-
mented by its interactive capabilities, which enable 
users to exercise control over kitchen equipment uti-
lizing the DT interface. This includes the capacity to 
fine-tune stove fire settings and regulate hood gear, as 
shown in Figure 29. By leveraging this feature, users 
can avoid opening the hood too late and the conse-
quent dissemination of fume, while simultaneously 
mitigating the risk of exposure to hazardous tempera-
tures and other associated dangers during equipment 
operation.

Figure 27. Temperature data query for different locations of the kitchen.

Figure 28. 3D flow field visualization(arrow(a), path line(b), particle mode(c)).
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6. Conclusion

In this paper, we build a DT framework for the smart 
kitchen, which encompasses data processing, flow 
field online simulation, equipment monitoring and 
control, interaction, and visualization. The DT facil- 
itates real-time monitoring and prediction of kitchen 
air quality and temperature, as well as the calculation 
and visualization of the kitchen flow field in real-time. 
The smart kitchen DT offers significant benefits for 
designers, enabling them to design appropriate 
kitchen appliances, improve development efficiency, 
and make more accurate predictions. For users, the 
DT offers valuable insights into the current state and 
dynamic evolution of the kitchen environment, 
thereby elevating the overall user experience to 
a higher level. To address the critical online simulation 
and visualization aspects of the DT, we propose an 
RFNO online simulation method, as well as an 
Echarts-based 2D flow field web visualization and 
UE5-based 3D flow field particle interactive visualiza- 
tion method. We validate the proposed approach 
using public datasets, simulation data, and experimen- 
tal data.

  The RFNO proposed in this paper is a data- 
driven approach that depends on the quality and 
quantity of data. We have generated several thou- 
sand sets of simulation data through the

FEATool Multiphysics toolbox and OpenFOAM 
software in verifying the effectiveness of the 
method. The research in this paper tests the 
validity of the methodology of this paper only on 
simulation data sets as well as on2D3C’s PIV 
data. Meanwhile, the method of this paper is 
utilized to analyze the impact of the kitchen 
flow field on the users through the prediction of 
air quality from real-time sensor data.
However, there are more challenging flow field 
problems in industrial scenarios. It is very difficult 
to obtain enough training samples of real flow 
fields. In the future, more attention needs to be 
paid to obtaining high-quality flow field samples, 
such as 3D3C’s PIV, to continue exploring the 
feasibility of applying this method to 3D flow
fields.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Ningbo Key Research and 
Development Programme under Grant No. 2023Z134, and 
the National Natural Science Foundation of China under 
Grant Nos. U22A6001, 52105279.

Figure 29. (a) and (b) illustrate the fume flow patterns observed in the actual kitchen, under low and high-gear hood working 
conditions, respectively. In contrast, (c) and (d) depict the corresponding fume flow patterns in the virtual kitchen, also under low 
and high gear hood working conditions, respectively.
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Appendix

All the synonyms that are used in this paper

Synonyms Explanation

DT Digital twin
FEA Finite Element Analysis
FNO Fourier Neural Operator

GNS Graph networks
IoT Internet of Things

JSON JavaScript Object Notation
PINN Physics-informed Neural Network

PIV Particle Image Velocimetry
POD Proper Orthogonal Decomposition

PM2.5 Particulate matter less than or equal to 2.5 microns in diameter
RFNO Residual-based Fourier Neural Operator
ROM Reduced-order model

UE5 Unreal Engine 5
VOC Volatile organic compounds

CNN Convolutional Neural Network
CPU Central Processing Unit

GPU Graphics Processing Unit
UMG Unreal Motion Graphics UI Designer
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